
Recitation 3
Computing Derivatives and Autograd

Talha Faiz, Fuyu Tang, and Zishen Wen

Agenda

1. Autograd and Computational graphs
2. Back propagations: derivatives, gradients, and chain rules
3. Computing derivatives

Autograd – HW1 Bonus

Automatic differentiation

● Recall what we did in back propagation (will cover in details soon):
○ Express the computation as a series of computations of intermediate values
○ Repeatedly apply the chain rule of differentiation

● All computer functions can be rewritten in the form of nested differentiable
operations

● We, thus, could use a framework, “Automatic Differentiation” (Autodiff), to
calculate the derivatives of any arbitrarily complex function.

Automatic differentiation

● In this bonus, we will build an alternative implementation of MyTorch
(HW*P1), based on a popular Automatic Differentiation framework –
Autograd.

● By doing this bonus, you might find your time spent on part 1s is saved!
● Key components:

○ Autograd engine -> the core class for performing Autodiff
○ Functional scripts/ activation/ linear/ loss -> Similar to part 1s, but are expected to be

decomposed into the most basic operation, in order to be recorded by autograd engine
○ Utils -> contains methods to store and update variables

Automatic differentiation

● Key ideas:
○ All calculations are break down into several basic operations (e.g. add, div, matmul, etc.)
○ Use a list to track the sequence of operation
○ When performing back propagation, the list is evaluated in reverse order (i.e. calculate the

gradient of inputs at each step and update them).

Automatic differentiation

● Example:
○ 𝑦 = 𝑊𝑥 + 𝑏

■ We first break it down to two basic operations: matmul and add:
𝑧 = 𝑊𝑥
𝑦 = 𝑧 + 𝑏

■ For each of those operations, we add a spot in Memory buffer for each of the inputs,
create an Operation object saving all information related to the operation and then
append it to operation list of Autograd class

■ Iterate over the operation list in reverse order

Automatic differentiation

Slide from :https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Computational graph

Slide from :https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Automatic differentiation (Forwards)

Slide from :https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Automatic differentiation (Forwards)

Slide from :https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

Automatic differentiation (Reversed)

Slide from :https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf

References

● https://dlsyscourse.org/slides/4-automatic-differentiation.pdf
● https://en.wikipedia.org/wiki/Automatic_differentiation
● https://deeplearning.cs.cmu.edu/S22/document/recitation/Recitation3/Recit

ation_3.pdf

Recommend to take a look

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf
https://en.wikipedia.org/wiki/Automatic_differentiation
https://deeplearning.cs.cmu.edu/S22/document/recitation/Recitation3/Recitation_3.pdf

During Back Propagations, you will find
we are doing the same thing….

What is a loss function and loss?

“The function we want to minimize or maximize is called the objective function or
criterion. When we are minimizing it, we may also call it the cost function, loss
function, or error function.” [1]

Functions of loss:

1.Monitor: Loss evaluates the performance of the model. The lower the loss is, the
better the model is.

2. Part of the optimizer:
Learning problem -> Optimization problem

Define loss function -> minimize the loss function

[1] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2017

Back propagation of loss

Loss is the starting point of the back propagation

Backpropagation aims to minimize the cost function by adjusting network’s
weights and biases. The level of adjustment is determined by the gradients of the
cost function w.r.t. those parameters.

Back propagation: Derivatives, Gradients, and the Chain Rule

Training a network:

1. Forward Propagation with current parameters
2. Calculate the loss
3. Backward Propagation to calculate the gradients of the parameters
4. Step to update the parameters with gradients

The gradient is the transpose of the derivative

Derivatives

Mathematically, the derivative of a function 𝑓 measures the
sensitivity of change of the function value w.r.t. a change in
its input value 𝑥.

= lim
𝑑𝑦 Δ𝑦
𝑑𝑥 Δ𝑥→0 Δ𝑥

Geometrically, the derivative of the 𝑓 w.r.t. 𝑥 at 𝑥0 is the
slope of the tangent line to the graph of 𝑓 at 𝑥0.

Derivatives of non-linear functions

Let 𝑦=𝑓(𝑥) be a relation between two variables, 𝑦 and 𝑥. If 𝑓(𝑥) is continuous
and differentiable, any small perturbation of 𝑥 will result in a small
perturbation of 𝑦. We define the derivative of 𝑦 with respect to 𝑦 as the
multiplier alpha that relates a miniscule perturbation 𝛿𝑥 of 𝑥 to the resulting
perturbation 𝛿𝑦 of 𝑦.

Derivatives

We note “the derivative of y with respect to x” as
Δ y = 𝛁𝒙𝒚 Δ𝑥

The shape of the derivative for any variable will be transposed w.r.t that variable
Ex:
For a function with scalar input 𝑥 and scalar output 𝑦,
its derivative is a scalar.

For a function with (D x 1) vector input 𝑥 and scalar output 𝑦,
its derivative is a (1 x D) row vector.

For a function with (D x 1) vector input 𝑥 and (K x 1) vector output 𝑦,
its derivative is a (K x D) matrix.

Derivatives

Scalar derivatives (scalar in, scalar out)
Δy = 𝒇′(𝒙) Δ𝑥

Multivariable derivatives (vector in, scalar out)

Δ𝑦 = 𝜵𝒙𝒚 Δ𝑥 =
𝜕𝑦
𝜕𝑥1

𝜕𝑦
, … , 𝜕𝑥𝐷

Δ𝑥1
⋮	

Δ𝑥𝐷

Full derivative Partial derivative

Derivatives

Multivariable derivatives (vector in, vector out)

Input 𝑥 =
𝑥1
⋮
𝑥𝐷

, Output y=
𝑦1
⋮
𝑦𝐾

Δ𝑦1
⋮

Δ𝑦𝐾
= 𝜵𝒙𝒚 Δ𝑥 =

𝜕𝑦1 ⋯

⋱

⋯

𝜕𝑦1
𝜕𝑥1
⋮

𝜕𝑦𝐾
𝜕𝑥1

𝜕𝑥𝐷
⋮

𝜕𝑦𝐾
𝜕𝑥𝐷

Δ𝑥1
⋮

Δ𝑥𝐷

K x D D x 1K x 1

Key Ideas about Derivatives

1. The derivative is the best linear approximation of 𝑓 at a point
2. The derivative is a linear transformation (matrix multiplication)
3. The derivative describes the effect of each input on the output

Computing Derivatives – Scalar Chain Rule

𝐿 = 𝑓(𝑧)
𝑧 = 𝑔(𝑥)

All terms are scalars

𝜕𝑧
𝜕𝐿 is given

𝜕𝑥 𝜕𝑧 𝜕𝑥 𝜕𝑧
𝜕𝐿 𝜕𝐿 𝜕𝑧 𝜕𝐿

= = 𝑔′(𝑥)

(given)

Computing Derivatives – Scalar Addition

𝐿 = 𝑓(𝑧)
𝑧 = 𝑥 + 𝑦

All terms are scalars

𝜕𝑧
𝜕𝐿 is given

𝜕𝐿 𝜕𝐿 𝜕𝑧 𝜕𝐿
𝜕𝑥 = 𝜕𝑧 𝜕𝑥 = 𝜕𝑧

= =
𝜕𝐿 𝜕𝐿 𝜕𝑧 𝜕𝐿
𝜕𝑦 𝜕𝑧 𝜕𝑦 𝜕𝑧

Computing Derivatives – Scalar Multiplication

𝐿 = 𝑓(𝑧)
𝑧 = 𝑊𝑥

All terms are scalars

𝜕𝑧
𝜕𝐿 is given

𝜕𝐿 𝜕𝐿 𝜕𝑧 𝜕𝐿
𝜕𝑥 = 𝜕𝑧 𝜕𝑥 = 𝜕𝑧 𝑊

𝜕𝐿 𝜕𝐿 𝜕𝑧
𝜕𝑊 𝜕𝑧 𝜕𝑊

= = 𝑥
𝜕𝐿
𝜕𝑧

Computing Derivatives – Scalar Generalized Chain Rule

+	𝑔2 𝑥
𝐿 = 𝑓(𝑧)

𝑧 = 𝑧1 + 𝑧2 + ⋯+ 𝑧𝑛 = 𝑔1 𝑥
All terms are scalars

+ ⋯+ 𝑔𝑛 𝑥

𝜕𝑧
𝜕𝐿 is given

𝜕𝐿 𝜕𝐿 𝜕𝑧 𝜕𝐿 𝜕𝑔1 𝜕𝑔2 𝜕𝑔𝑛
𝜕𝑥 = 𝜕𝑧 𝜕𝑥 = 𝜕𝑧 (𝜕𝑥 + 𝜕𝑥 + ⋯+ 𝜕𝑥)

Computing Derivatives – Multivariable Chain Rule

𝐿 = 𝑓(𝑧)
𝑧 = 𝑔(𝑥)

Here	we	assume	that	L	is	M	x	1	vector
𝑥 is D	x 1 vector, 𝑧 is K	x	1 vector
𝛻𝑧𝐿 is given (M x K) matrix

𝛻𝑥𝐿 = 𝛻𝑧𝐿 𝛻𝑥𝑍
M x K K x DM x D

Computing Derivatives – Multivariable Vector Addition

𝐿 = 𝑓(𝑧)
𝑧 = 𝑥 + 𝑦

𝑥, y, z are all D x 1 vectors
𝛻𝑧𝐿 is given (M x D) matrix

𝛻𝑥𝐿 = 𝛻𝑧𝐿 𝛻𝑥𝑍 = 𝛻𝑧𝐿
𝛻𝑦𝐿 = 𝛻𝑧𝐿 𝛻𝑦𝑍 = 𝛻𝑧𝐿

M x D M x D D x D

Computing Derivatives – Multivariable Vector Addition of
derivatives

𝐿 = 𝑓1 𝑧 + 𝑓2(𝑦)
𝑧 = 𝑔(𝑥)
𝑦 = ℎ(𝑥)

𝑥 is D	x 1 vector, 𝑧 is K x	1 vector, 𝑦 is M x 1 vector
𝛻𝑧𝐿 is given (N x K) matrix
𝛻𝑦𝐿 is given (N x M) matrix

𝛻𝑥𝐿 = 𝛻𝑧𝐿 𝛻𝑥𝑍+ 𝛻𝑦𝐿 𝛻𝑥𝑌

N x K K x DN x D N x M M x D

Computing Derivatives – Multivariable Matrix Multiplication

𝐿 = 𝑓(𝑧)
𝑧 = 𝑊𝑥

𝑥 is a D x 1	vector
𝑧 is a K	x 1	vector
W is a K x D matrix
𝛻𝑧𝐿 is given (1 x K) vector

𝛻𝑥𝐿 = 𝛻𝑧𝐿 𝛻𝑥𝑍 = (𝛻𝑧𝐿)𝑊
𝛻𝑊𝐿 = 𝛻𝑧𝐿 𝛻𝑊𝑍 = 𝑥(𝛻𝑧𝐿)

1 x D
D x K

Computing Derivatives – Multivariable Generalized Chain Rule

+	𝑔2 𝑥
𝐿 = 𝑓(𝑧)

𝑧 = 𝑧1 + 𝑧2 + ⋯+ 𝑧𝑛 = 𝑔1 𝑥

Loss	L	is	a	M	x	1	vector
𝑥 is a D x 1	vector
𝑧 is a K	x 1	vector
𝛻𝑧𝐿 is given (M x K) matrix

+ ⋯+ 𝑔𝑛 𝑥

𝛻𝑥𝐿 = 𝛻𝑧𝐿 𝛻𝑥𝑍 = 𝛻𝑧𝐿(𝛻𝑥𝑍1+ 𝛻𝑥𝑍2+⋯+𝛻𝑥𝑍𝑛)

Computing derivatives of complex functions

● We now are prepared to compute very complex derivatives
● Procedure:

○ Express the computation as a series of computations of intermediate values
○ Each computation must comprise either a unary or binary relation

■ Unary relation: RHS has one argument, e.g. 𝑦 = 𝑔(𝑥)
■ Binary relation: RHS has two arguments

e.g. 𝑧 = 𝑥 + 𝑦 or z = 𝑥𝑦
○ Walk your way backward through the derivatives of the simple relations

Example:

● 𝑦2 = 𝑡𝑎𝑛ℎ 𝑊𝑥1	𝑥1 + 𝑏𝑥1 +𝑊𝑥2𝑥2 + 𝑏𝑥2
● 𝑧1 = 𝑡𝑎𝑛ℎ 𝑊𝑦1𝑦1 + 𝑏𝑦1 +𝑊𝑦2𝑦2 + 𝑏𝑦2

𝑥2

𝑥1 𝑦1

𝑦2

𝑧1

→: (𝑊𝑥 + 𝑏)

Example:

● 𝑦2 = 𝑡𝑎𝑛ℎ 𝑊𝑥1	𝑥1 + 𝑏𝑥1 +𝑊𝑥2𝑥2 + 𝑏𝑥2
● 𝑧1 = 𝑡𝑎𝑛ℎ 𝑊𝑦1𝑦1 + 𝑏𝑦1 +𝑊𝑦2𝑦2 + 𝑏𝑦2

𝑥2

𝑥1 𝑦1

𝑦2

𝑧1

2 𝑥2

● 𝑖1 = 𝑊𝑥1𝑥1
● 𝑖2 = 𝑊𝑥2	𝑥2
● 𝑖3 = 𝑖1 + 𝑏𝑥1 + 𝑖 +	𝑏
● 𝑦2 = 𝑡𝑎𝑛ℎ 𝑖3

Example:

● 𝑦2 = 𝑡𝑎𝑛ℎ 𝑊𝑥1	𝑥1 + 𝑏𝑥1 +𝑊𝑥2𝑥2 + 𝑏𝑥2
● 𝑧1 = 𝑡𝑎𝑛ℎ 𝑊𝑦1𝑦1 + 𝑏𝑦1 +𝑊𝑦2𝑦2 + 𝑏𝑦2

𝑥2

𝑥1 𝑦1

𝑦2

𝑧1

𝑦1 5 𝑦2

● 𝑖4 = 𝑊𝑦1	𝑦1
● 𝑖5 = 𝑊𝑦2	𝑦2
● 𝑖6 = 𝑖4 + 𝑏 + 𝑖 +	𝑏
● 𝑧1 = 𝑡𝑎𝑛ℎ 𝑖6

Example:

● 𝑦2 = 𝑡𝑎𝑛ℎ 𝑊𝑥1	𝑥1 + 𝑏𝑥1 +𝑊𝑥2𝑥2 + 𝑏𝑥2
● 𝑧1 = 𝑡𝑎𝑛ℎ 𝑊𝑦1𝑦1 + 𝑏𝑦1 +𝑊𝑦2𝑦2 + 𝑏𝑦2

𝑥2

𝑥1 𝑦1

𝑦2

𝑧1

4 𝑦1 1● 𝑖 = 𝑊 𝑦
● 𝑖5 = 𝑊𝑦2	𝑦2
● 𝑖6 = 𝑖4 + 𝑏𝑦1 + 𝑖5 + 𝑏𝑦2
● 𝑧1 = 𝑡𝑎𝑛ℎ 𝑖6

1 𝑥1 1● 𝑖 = 𝑊 𝑥
● 𝑖2 = 𝑊𝑥2	𝑥2
● 𝑖3 = 𝑖1 + 𝑏𝑥1 + 𝑖2 + 𝑏𝑥2
● 𝑦2 = 𝑡𝑎𝑛ℎ 𝑖3

Example:

● 𝑦2 = 𝑡𝑎𝑛ℎ 𝑊𝑥1	𝑥1 + 𝑏𝑥1 +𝑊𝑥2𝑥2 + 𝑏𝑥2
● 𝑧1 = 𝑡𝑎𝑛ℎ 𝑊𝑦1𝑦1 + 𝑏𝑦1 +𝑊𝑦2𝑦2 + 𝑏𝑦2
● 𝑑𝐿

1𝑑𝑧

𝑥2

𝑥1 𝑦1

𝑦2

𝑧1

4 𝑦1 1● 𝑖 = 𝑊 𝑦
● 𝑖5 = 𝑊𝑦2	𝑦2
● 𝑖6 = 𝑖4 + 𝑏𝑦1 + 𝑖5 + 𝑏𝑦2
● 𝑧1 = 𝑡𝑎𝑛ℎ 𝑖6

1 𝑥1 1● 𝑖 = 𝑊 𝑥
● 𝑖2 = 𝑊𝑥2	𝑥2
● 𝑖3 = 𝑖1 + 𝑏𝑥1 + 𝑖2 + 𝑏𝑥2
● 𝑦2 = 𝑡𝑎𝑛ℎ 𝑖3

(𝛻𝑧1𝐿)Given

Example:

𝑑𝑧1
𝑑𝐿 (𝛻𝑧1𝐿)● Given

● 𝛻𝑖 𝐿 = 𝛻𝑧 𝐿 𝛻𝑖 𝑧1 = 𝛻𝑧 𝐿 (1 − 𝑡𝑎𝑛ℎ2(𝑖6))
6 1 6 1

● 𝑧1 = 𝑡𝑎𝑛ℎ 𝑖6

Example:

𝑑𝑧1
𝑑𝐿 (𝛻𝑧1𝐿)

𝑖6 𝑧1 𝑖6 1 𝑧1 6

● Given

● 𝛻 𝐿 = 𝛻 𝐿 𝛻 𝑧 = 𝛻 𝐿 (1 − 𝑡𝑎𝑛ℎ2(𝑖))
● 𝛻𝑖4𝐿 = 𝛻𝑖6𝐿 𝛻𝑖4𝑖6 = 𝛻𝑖6𝐿
● 𝛻𝑏𝑦 𝐿 = 𝛻𝑖6𝐿 𝛻𝑏𝑦 𝑖6 = 𝛻𝑖6𝐿

1 1

● 𝛻𝑖5𝐿 = 𝛻𝑖6𝐿 𝛻𝑖5𝑖6 = 𝛻𝑖6𝐿
● 𝛻𝑏𝑦 𝐿 = 𝛻𝑖6𝐿 𝛻𝑏𝑦 𝑖6 = 𝛻𝑖6𝐿

2 2

● 𝑧1 = 𝑡𝑎𝑛ℎ 𝑖6
● 𝑖6 = 𝑖4 + 𝑏𝑦1 5+ 𝑖 + 𝑏𝑦2

Example:

𝑑𝑧1
𝑑𝐿 (𝛻𝑧1𝐿)

4 6 4 6

● Given
● 𝛻𝑖 𝐿 = 𝛻𝑧 𝐿 𝛻𝑖 𝑧1 = 𝛻𝑧 𝐿 (1 − 𝑡𝑎𝑛ℎ2(𝑖6))

6 1 6 1

● 𝛻𝑖 𝐿 = 𝛻𝑖 𝐿 𝛻𝑖 𝑖6 = 𝛻𝑖 𝐿
● 𝛻𝑏𝑦 𝐿 = 𝛻𝑖6𝐿 𝛻𝑏𝑦 𝑖6 = 𝛻𝑖6𝐿

1 1

● 𝛻𝑖5𝐿 = 𝛻𝑖6𝐿 𝛻𝑖5𝑖6 = 𝛻𝑖6𝐿
● 𝛻𝑏𝑦 𝐿 = 𝛻𝑖6𝐿 𝛻𝑏𝑦 𝑖6 = 𝛻𝑖6𝐿

2 2

● 𝛻𝑊𝑦 𝐿 = 𝛻𝑖5𝐿 𝛻𝑊𝑦 𝑖5 = 𝑦2𝛻𝑖5𝐿
2 2

● 𝛻𝑦2𝐿 = 𝛻𝑖5𝐿 𝛻𝑦2𝑖5 = 𝛻𝑖5𝐿 𝑊𝑦2

5+ 𝑖 + 𝑏𝑦2
2

● 𝑧1 = 𝑡𝑎𝑛ℎ 𝑖6
● 𝑖6 = 𝑖4 + 𝑏𝑦1
● 𝑖5 = 𝑊𝑦 𝑦2

Example:

𝑑𝑧1
𝑑𝐿 (𝛻𝑧1𝐿)

𝑏𝑦1 𝑖6 𝑏𝑦1 6 𝑖6

● Given
● 𝛻𝑖 𝐿 = 𝛻𝑧 𝐿 𝛻𝑖 𝑧1 = 𝛻𝑧 𝐿 (1 − 𝑡𝑎𝑛ℎ2(𝑖6))

6 1 6 1

● 𝛻𝑖4𝐿 = 𝛻𝑖6𝐿 𝛻𝑖4𝑖6 = 𝛻𝑖6𝐿
● 𝛻 𝐿 = 𝛻 𝐿 𝛻 𝑖 = 𝛻 𝐿
● 𝛻𝑖5𝐿 = 𝛻𝑖6𝐿 𝛻𝑖5𝑖6 = 𝛻𝑖6𝐿
● 𝛻𝑏𝑦 𝐿 = 𝛻𝑖6𝐿 𝛻𝑏𝑦 𝑖6 = 𝛻𝑖6𝐿

2 2

● 𝛻𝑊𝑦 𝐿 = 𝛻𝑖5𝐿 𝛻𝑊𝑦 𝑖5 = 𝑦2𝛻𝑖5𝐿
2 2

● 𝛻𝑦2𝐿 = 𝛻𝑖5𝐿 𝛻𝑦2𝑖5 = 𝛻𝑖5𝐿 𝑊𝑦2
● 𝛻𝑊𝑦 𝐿 = 𝛻𝑖4𝐿 𝛻𝑊𝑦 𝑖4 = 𝑦1𝛻𝑖4𝐿

1 1

● 𝛻𝑦1𝐿 = 𝛻𝑖4𝐿 𝛻𝑦1𝑖4 = 𝛻𝑖4𝐿 𝑊𝑦1

5+ 𝑖 + 𝑏𝑦2
2

1

● 𝑧1 = 𝑡𝑎𝑛ℎ 𝑖6
● 𝑖6 = 𝑖4 + 𝑏𝑦1
● 𝑖5 = 𝑊𝑦 𝑦2
● 𝑖4 = 𝑊𝑦 𝑦1

Example:

● 𝑦2 = 𝑡𝑎𝑛ℎ 𝑊𝑥1	𝑥1 + 𝑏𝑥1 +𝑊𝑥2𝑥2 + 𝑏𝑥2
● 𝑧1 = 𝑡𝑎𝑛ℎ 𝑊𝑦1𝑦1 + 𝑏𝑦1 +𝑊𝑦2𝑦2 + 𝑏𝑦2
● 𝑑𝐿

1𝑑𝑧

𝑥2

𝑥1 𝑦1

𝑦2

𝑧1

4 𝑦1 1● 𝑖 = 𝑊 𝑦
● 𝑖5 = 𝑊𝑦2	𝑦2
● 𝑖6 = 𝑖4 + 𝑏𝑦1 + 𝑖5 + 𝑏𝑦2
● 𝑧1 = 𝑡𝑎𝑛ℎ 𝑖6

1 𝑥1 1● 𝑖 = 𝑊 𝑥
● 𝑖2 = 𝑊𝑥2	𝑥2
● 𝑖3 = 𝑖1 + 𝑏𝑥1 + 𝑖2 + 𝑏𝑥2
● 𝑦2 = 𝑡𝑎𝑛ℎ 𝑖3

(𝛻𝑧1𝐿)Given

Example:

𝑑𝐿
𝑑𝑦2 𝑦2● Given (𝛻 𝐿)

● 𝛻𝑖 𝐿 = 𝛻𝑦 𝐿 𝛻𝑖 𝑦2 = 𝛻𝑦 𝐿 (1 − 𝑡𝑎𝑛ℎ2(𝑖3))
3 2 3 2

● 𝑦2 = 𝑡𝑎𝑛ℎ 𝑖3

Example:

𝑑𝐿
𝑑𝑦2 𝑦2(𝛻 𝐿)

𝑖3 𝑦2 𝑖3 2 𝑦2 3

● Given

● 𝛻 𝐿 = 𝛻 𝐿 𝛻 𝑦 = 𝛻 𝐿 (1 − 𝑡𝑎𝑛ℎ2(𝑖))
● 𝛻𝑖2𝐿 = 𝛻𝑖3𝐿 𝛻𝑖2𝑖3 = 𝛻𝑖3𝐿
● 𝛻𝑏𝑥 𝐿 = 𝛻𝑖3𝐿 𝛻𝑏𝑥 𝑖3 = 𝛻𝑖3𝐿

1 1

● 𝛻𝑖1𝐿 = 𝛻𝑖3𝐿 𝛻𝑖1𝑖3 = 𝛻𝑖3𝐿
● 𝛻𝑏𝑥 𝐿 = 𝛻𝑖3𝐿 𝛻𝑏𝑥 𝑖3 = 𝛻𝑖3𝐿

2 2

● 𝑦2 = 𝑡𝑎𝑛ℎ 𝑖3
● 𝑖3 = 𝑖1 + 𝑏𝑥1 2+ 𝑖 + 𝑏𝑥2

Example:

𝑑𝐿
𝑑𝑦2 𝑦2(𝛻 𝐿)

𝑖3 𝑦2 𝑖3 2 𝑦2 3

2 3 2 3

● Given

● 𝛻 𝐿 = 𝛻 𝐿 𝛻 𝑦 = 𝛻 𝐿 (1 − 𝑡𝑎𝑛ℎ2(𝑖))
● 𝛻𝑖 𝐿 = 𝛻𝑖 𝐿 𝛻𝑖 𝑖3 = 𝛻𝑖 𝐿
● 𝛻𝑏𝑥 𝐿 = 𝛻𝑖3𝐿 𝛻𝑏𝑥 𝑖3 = 𝛻𝑖3𝐿

1 1

● 𝛻𝑖1𝐿 = 𝛻𝑖3𝐿 𝛻𝑖1𝑖3 = 𝛻𝑖3𝐿
● 𝛻𝑏𝑥 𝐿 = 𝛻𝑖3𝐿 𝛻𝑏𝑥 𝑖3 = 𝛻𝑖3𝐿

2 2

● 𝛻𝑊𝑥 𝐿 = 𝛻𝑖2𝐿 𝛻𝑊𝑥 𝑖2 = 𝑥2𝛻𝑖2𝐿
2 2

● 𝛻𝑥2𝐿 = 𝛻𝑖2𝐿 𝛻𝑥2𝑖2 = 𝛻𝑖2𝐿 𝑊𝑥2

2+ 𝑖 + 𝑏𝑥2
2

● 𝑦2 = 𝑡𝑎𝑛ℎ 𝑖3
● 𝑖3 = 𝑖1 + 𝑏𝑥1
● 𝑖2 = 𝑊𝑥 𝑥2

Example:

𝑑𝐿
𝑑𝑦2 𝑦2(𝛻 𝐿)

𝑖3 𝑦2 𝑖3 2 𝑦2 3

2 3 2 3

𝑏𝑥1 𝑖3 𝑏𝑥1 3 𝑖3= 𝛻 𝐿

● Given

● 𝛻 𝐿 = 𝛻 𝐿 𝛻 𝑦 = 𝛻 𝐿 (1 − 𝑡𝑎𝑛ℎ2(𝑖))
● 𝛻𝑖 𝐿 = 𝛻𝑖 𝐿 𝛻𝑖 𝑖3 = 𝛻𝑖 𝐿
● 𝛻 𝐿 = 𝛻 𝐿 𝛻 𝑖
● 𝛻𝑖1𝐿 = 𝛻𝑖3𝐿 𝛻𝑖1𝑖3 = 𝛻𝑖3𝐿
● 𝛻𝑏𝑥 𝐿 = 𝛻𝑖3𝐿 𝛻𝑏𝑥 𝑖3 = 𝛻𝑖3𝐿

2 2

● 𝛻𝑊𝑥 𝐿 = 𝛻𝑖2𝐿 𝛻𝑊𝑥 𝑖2 = 𝑥2𝛻𝑖2𝐿
2 2

● 𝛻𝑥2𝐿 = 𝛻𝑖2𝐿 𝛻𝑥2𝑖2 = 𝛻𝑖2𝐿 𝑊𝑥2
● 𝛻𝑊𝑥 𝐿 = 𝛻𝑖1𝐿 𝛻𝑊𝑥 𝑖1 = 𝑥1𝛻𝑖1𝐿

1 1

● 𝛻𝑥1𝐿 = 𝛻𝑖1𝐿 𝛻𝑥1𝑖1 = 𝛻𝑖1𝐿 𝑊𝑥1

2+ 𝑖 + 𝑏𝑥2
2

1

● 𝑦2 = 𝑡𝑎𝑛ℎ 𝑖3
● 𝑖3 = 𝑖1 + 𝑏𝑥1
● 𝑖2 = 𝑊𝑥 𝑥2
● 𝑖1 = 𝑊𝑥 𝑥1

When to use “=” vs “+=”

● In the forward computation a variable may be used multiple times to compute
other intermediate variables

● During backward computations, the first time the derivative is computed for
the variable, the we will use “=“

● In subsequent computations we use “+=“
● It may be difficult to keep track of when we first compute the derivative for a

variable
○ When to use “=“ vs when to use “+=“

● Cheap trick:
○ Initialize all derivatives to 0 during computation
○ Always use “+=“
○ You will get the correct answer (why?)

● In the figures below which example do you think uses “+=”?

𝑥2

𝑥1 𝑦1

𝑦2

𝑧1

𝑥2

𝑥1 𝑦1

𝑦2

𝑧1

● In the example (left figure) we showed before, we kept using “=”, think about why it worked
● In the new example (right figure), which variable requires “+=” ?

𝑥2

𝑥1 𝑦1

𝑦2

𝑧1

𝑥2

𝑥1 𝑦1

𝑦2

𝑧1

● In the example (left figure) we showed before, we kept using “=”, think about why it worked
● In the new example (right figure), which variable requires “+=” ?

𝑥2

𝑥1 𝑦1

𝑦2

𝑧1

𝑥2

𝑥1 𝑦1

𝑦2

𝑧1

References

● https://deeplearning.cs.cmu.edu/S21/document/recitation/Recitation2.pdf
● https://deeplearning.cs.cmu.edu/F20/document/recitation/recitation2.1.pdf
● https://deeplearning.cs.cmu.edu/F20/document/recitation/recitation2.2.pdf
● https://deeplearning.cs.cmu.edu/S20/document/recitation/recitation-2.pdf
● https://pytorch.org/docs/stable/nn.html#loss-functions
● https://towardsdatascience.com/understanding-backpropagation-algorithm-

7bb3aa2f95fd

https://deeplearning.cs.cmu.edu/S21/document/recitation/Recitation2.pdf
https://deeplearning.cs.cmu.edu/F20/document/recitation/recitation2.1.pdf
https://deeplearning.cs.cmu.edu/F20/document/recitation/recitation2.2.pdf
https://deeplearning.cs.cmu.edu/S20/document/recitation/recitation-2.pdf
https://pytorch.org/docs/stable/nn.html
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd

